Skip to contents

Introduction

This vignette will explore in detail all the possibilities of the xportr package for applying information from a metadata object to an R created dataset using the core xportr functions.

We will also explore the following:

  • What goes in a Submission to a Health Authority, and what role does xportr play in that Submission?
  • What is xportr validating behind the scenes?
  • Breakdown of xportr and a ADaM dataset specification file.
  • Using options() and xportr_metadata() to enhance your xportr experience.
  • Understanding the warning and error messages for each xportr function.
  • A brief discussion on future work.

NOTE: We use the phrase metadata object throughout this package. A metadata object can either be a specification file read into R as a dataframe or a metacore object. The metadata object created via the metacore package has additional features not covered here, but at its core is using a specification file. However, xportr will work with either a dataframe or a metacore object.

What goes in a Submission to a Health Authority?

Quite a bit! We will focus on the data deliverables and supporting documentation needed for a successful submission to a Health Authority and how xportr can play a key role. We will briefly look at three parts:

  1. Study Data Standardization Plan
  2. SDTM Data Package
  3. ADaM Data Package

Study Data Standardization Plan

The Study Data Standardization Plan (SDSP) establishes and documents a plan for describing the data standardization approach for clinical and nonclinical studies within a development program. The SDSP also assists the FDA in identifying potential data standardization issues early in the development program. We hope the brevity of this section does not belie the huge importance of this document. Please see Study Data Standardisation Plan (SDSP) Package maintained by the PHUSE working group. However, we want to focus more on the actual data and how xportr can play a role in the submission.

SDTM and ADaM Data Packages

SDTM: The primary pieces of the SDTM package are the SDTM annotated case report forms (acrf.pdf), the data definitions document (define.xml), the Study Data Reviewer’s Guide (sdrg.pdf) and the datasets in xpt Version 5 format. The Version 5 xpt file is the required submission format for all datasets going to the Health Authorities.

ADaM: The key components of the ADaM package are very similar to SDTM package with a few additions: define.xml, Analysis Study Data Reviewer’s Guide (adrg.pdf), Analysis Results Metadata (analysis-results-metadata.pdf) and datasets as Version 5 xpt format.

As both Data Packages need compliant xpt files, we feel that xportr can play a pivotal role here. The core functions in xportr can be used to apply information from the metadata object to the datasets giving users feedback on the quality of the metadata and data. xportr_write() can then be used to write out the final dataset as an xpt file, which can be submitted to a Health Authority.

What is {xportr} validating in these Data Packages?

The xpt Version 5 files form the backbone of any successful Submission and are govern by quite a lot of rules and suggested guidelines. As you are preparing your data packages for submission the suite of core xportr functions, plus xportr_write(), helps to check that your datasets are submission compliant. The package checks many of the latest rules laid out in the Study Data Technical Conformance Guide, but please note that it is not yet an exhaustive list of checks. We envision that users are also submitting their xpts and metadata to additional validation software.

Each of the core xportr functions for applying labels, types, formats, order and lengths provides feedback to users on submission compliance. However, a final check is implemented when xportr_write() is called to create the xpt. xportr_write() calls xpt_validate(), which is a behind the scenes/non-exported function that does a final check for compliance. At the time of {xportr} v0.3.0 we are checking the following when a user writes out an xpt file.:

validate

{xportr} in action

In this section, we are going to explore the 5 core xportr functions using:

  • data("adsl_xportr", package = "xportr") - An ADSL ADaM dataset from the Pilot 3 Submission to the FDA
  • data("var_spec", package = "xportr") - The ADSL ADaM Specification File from the Pilot 3 Submission to the FDA

We will focus on warning and error messaging with contrived examples from these functions by manipulating either the datasets or the specification files.

NOTE: We have made the ADSL and Spec available in this package. Users can find additional datasets and specification files on our repo in the example_data_specs folder. This is to keep the package to a minimum size.

Using options() and xportr_metadata() to enhance your experience.

Before we dive into the functions, we want to point out some quality of life utilities to make your xpt generation life a little bit easier.

NOTE: As long as you have a well-defined metadata object you do NOT need to use options() or xportr_metadata(), but we find these handy to use and think they deserve a quick mention!

You’ve got options() or xportr_options()

xportr is built with certain assumptions around specification column names and information in those columns. We have found that each company specification file can differ slightly from our assumptions. For example, one company might call a column Variables, another Variable and another variables. Rather than trying to regex ourselves out of this situation, we have introduced options(). options() allows users to control those assumptions inside xportr functions based on their needs.

Additionally, we have a helper function xportr_options() which works just like the options() but, it can also be used to get the current state of the xportr options.

Let’s take a look at our example specification file names available in this package. We can see that all the columns start with an upper case letter and have spaces in several of them. We could convert all the column names to lower case and deal with the spacing using some dplyr functions or base R, or we could just use options()!

library(xportr)
library(dplyr)
library(haven)

data("adsl_xportr", "var_spec", "dataset_spec", package = "xportr")
colnames(var_spec)
   [1] "Order"              "Dataset"            "Variable"          
   [4] "Label"              "Data Type"          "Length"            
   [7] "Significant Digits" "Format"             "Mandatory"         
  [10] "Assigned Value"     "Codelist"           "Common"            
  [13] "Origin"             "Pages"              "Method"            
  [16] "Predecessor"        "Role"               "Comment"           
  [19] "Developer Notes"
ADSL <- adsl_xportr

By using options() or xportr_options() at the beginning of our script we can tell xportr what the valid names are (see chunk below). Please note that before we set the options the package assumed every thing was in lowercase and there were no spaces in the names. After running options() or xportr_options(), xportr sees the column Variable as the valid name rather than variable. You can inspect xportr_options function docs to look at additional options.

xportr_options(
  xportr.variable_name = "Variable",
  xportr.label = "Label",
  xportr.type_name = "Data Type",
  xportr.format = "Format",
  xportr.length = "Length",
  xportr.order_name = "Order"
)

# Or alternatively
options(
  xportr.variable_name = "Variable",
  xportr.label = "Label",
  xportr.type_name = "Data Type",
  xportr.format = "Format",
  xportr.length = "Length",
  xportr.order_name = "Order"
)

Are we being too verbose?

One final note on the options. 4 of the core xportr functions have the ability to set messaging as "none", "message", "warn", "stop". Setting each of these in all your calls can be a bit repetitive. You can use options() or xportr_options() to set these at a higher level and avoid this repetition.

# Default verbose is set to `none`
xportr_options(
  xportr.format_verbose = "none",
  xportr.label_verbose = "none",
  xportr.length_verbose = "none",
  xportr.type_verbose = "none"
)

xportr_options(
  xportr.format_verbose = "none", # Disables any messaging, keeping the console output clean
  xportr.label_verbose = "message", # Sends a standard message to the console
  xportr.length_verbose = "warn", # Sends a warning message to the console
  xportr.type_verbose = "stop" # Stops execution and sends an error message to the console
)

Going meta

Each of the core xportr functions requires several inputs: A valid dataframe, a metadata object and a domain name, along with optional messaging. For example, here is a simple call using all of the functions. As you can see, a lot of information is repeated in each call.

ADSL %>%
  xportr_type(var_spec, "ADSL", "message") %>%
  xportr_length(var_spec, "ADSL", verbose = "message") %>%
  xportr_label(var_spec, "ADSL", "message") %>%
  xportr_order(var_spec, "ADSL", "message") %>%
  xportr_format(var_spec, "ADSL") %>%
  xportr_df_label(dataset_spec, "ADSL") %>%
  xportr_write("adsl.xpt")

To help reduce these repetitive calls, we have created xportr_metadata(). A user can just set the metadata object and the Domain name in the first call, and this will be passed on to the other functions. Much cleaner!

ADSL %>%
  xportr_metadata(var_spec, "ADSL") %>%
  xportr_type() %>%
  xportr_length(length_source = "metadata") %>%
  xportr_label() %>%
  xportr_order() %>%
  xportr_format() %>%
  xportr_df_label(dataset_spec) %>%
  xportr_write("adsl.xpt")

Warnings and Errors

For the next six sections, we are going to explore the Warnings and Errors messages generated by the xportr core functions. To better explore these, we will either manipulate the ADaM dataset or specification file to help showcase the ability of the xportr functions to detect issues.

NOTE: We have made the ADSL, xportr::adsl, and Specification File, xportr::var_spec, available in this package. Users can find additional datasets and specification files on our repo in the example_data_specs folder.

Setting up our metadata object

First, let’s read in the specification file and call it var_spec. Note that we are not using options() here. We will do some slight manipulation to the column names by doing all lower case, and changing Data Type to type and making the Order column numeric. You can also use options() for this step as well. The var_spec object has five dataset specification files stacked on top of each other. We will make use of the ADSL subset of var_spec. You can make use of the Search field above the dataset column to subset the specification file for ADSL Similarly, we can read the Dataset spec file and call it dataset_spec.

var_spec <- var_spec %>%
  rename(type = "Data Type") %>%
  rename_with(tolower)

dataset_spec <- dataset_spec %>%
  rename(label = "Description") %>%
  rename_with(tolower)

xportr_type()

We are going to explore the type column in the metadata object. A submission to a Health Authority should only have character and numeric types in the data. In the ADSL data we have several columns that are in the Date type: TRTSDT, TRTEDT, SCRFDT, EOSDT, FRVDT, RANDDT, DTHDT, LSTALVDT - under the hood these are actually numeric values and will be left as is. We will change one variable type to a factor variable, which is a common data structure in R, to give us some educational opportunities to see xportr_type() in action.

adsl_fct <- ADSL %>%
  mutate(STUDYID = as_factor(STUDYID))
  Rows: 306
  Columns: 9
  $ STUDYID  <fct> CDISCPILOT01, CDISCPILOT01, CDISCPILOT01, CDISCPILOT01, CDISC…
  $ TRTSDT   <date> 2014-01-02, 2012-08-05, 2013-07-19, 2014-03-18, 2014-07-01, …
  $ TRTEDT   <date> 2014-07-02, 2012-09-01, 2014-01-14, 2014-03-31, 2014-12-30, …
  $ SCRFDT   <date> NA, NA, NA, NA, NA, NA, 2013-12-20, NA, NA, NA, NA, NA, NA, …
  $ EOSDT    <date> 2014-07-02, 2012-09-02, 2014-01-14, 2014-04-14, 2014-12-30, …
  $ FRVDT    <date> NA, 2013-02-18, NA, 2014-09-15, NA, 2013-07-28, NA, NA, 2013…
  $ RANDDT   <date> 2014-01-02, 2012-08-05, 2013-07-19, 2014-03-18, 2014-07-01, …
  $ DTHDT    <date> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
  $ LSTALVDT <date> 2014-07-02, 2012-09-02, 2014-01-14, 2014-04-14, 2014-12-30, …
adsl_type <- xportr_type(.df = adsl_fct, metadata = var_spec, domain = "ADSL", verbose = "warn")
  
  ── Variable type mismatches found. ──
  
1 variable coerced
  Warning: Variable type(s) in dataframe don't match metadata: `STUDYID`
  - `STUDYID` was coerced to <character>. (type in data: factor, type in metadata: text)
  i Types in metadata considered as character (xportr.character_metadata_types option): 'character', 'char', 'text', 'date', 'posixct', 'posixt', 'datetime', 'time', 'partialdate', 'partialtime', 'partialdatetime', 'incompletedatetime', 'durationdatetime', and 'intervaldatetime'
  i Types in metadata considered as numeric (xportr.numeric_metadata_types option): 'integer', 'numeric', 'num', and 'float'
  i Types in data considered as character (xportr.character_types option): 'character'
  i Types in data considered as numeric (xportr.numeric_types option): 'integer', 'float', 'numeric', 'posixct', 'posixt', 'time', 'date', and 'hms'

Success! As we can see below, xportr_type() applied the types from the metadata object to the STUDYID variables converting to the proper type. The functions in xportr also display this coercion to the user in the console, which is seen above.

glimpse(adsl_type_glimpse)
  Rows: 306
  Columns: 9
  $ STUDYID  <chr> "CDISCPILOT01", "CDISCPILOT01", "CDISCPILOT01", "CDISCPILOT01…
  $ TRTSDT   <date> 2014-01-02, 2012-08-05, 2013-07-19, 2014-03-18, 2014-07-01, …
  $ TRTEDT   <date> 2014-07-02, 2012-09-01, 2014-01-14, 2014-03-31, 2014-12-30, …
  $ SCRFDT   <date> NA, NA, NA, NA, NA, NA, 2013-12-20, NA, NA, NA, NA, NA, NA, …
  $ EOSDT    <date> 2014-07-02, 2012-09-02, 2014-01-14, 2014-04-14, 2014-12-30, …
  $ FRVDT    <date> NA, 2013-02-18, NA, 2014-09-15, NA, 2013-07-28, NA, NA, 2013…
  $ RANDDT   <date> 2014-01-02, 2012-08-05, 2013-07-19, 2014-03-18, 2014-07-01, …
  $ DTHDT    <date> NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, NA, …
  $ LSTALVDT <date> 2014-07-02, 2012-09-02, 2014-01-14, 2014-04-14, 2014-12-30, …

Note that xportr_type(verbose = "warn") was set so the function has provided feedback, which would show up in the console, on which variables were converted as a warning message. However, you can set verbose = "stop" so that the types are not applied if the data does not match what is in the specification file. Using verbose = "stop" will instantly stop the processing of this function and not create the object. A user will need to alter the variables in their R script before using xportr_type()

adsl_type <- xportr_type(.df = adsl_fct, metadata = var_spec, domain = "ADSL", verbose = "stop")
  
  ── Variable type mismatches found. ──
  
1 variable coerced
  Error in `xportr_logger()` at xportr/R/messages.R:126:5:
  ! Variable type(s) in dataframe don't match metadata: `STUDYID`
  - `STUDYID` was coerced to <character>. (type in data: factor, type in metadata: text)
  i Types in metadata considered as character (xportr.character_metadata_types option): 'character', 'char', 'text', 'date', 'posixct', 'posixt', 'datetime', 'time', 'partialdate', 'partialtime', 'partialdatetime', 'incompletedatetime', 'durationdatetime', and 'intervaldatetime'
  i Types in metadata considered as numeric (xportr.numeric_metadata_types option): 'integer', 'numeric', 'num', and 'float'
  i Types in data considered as character (xportr.character_types option): 'character'
  i Types in data considered as numeric (xportr.numeric_types option): 'integer', 'float', 'numeric', 'posixct', 'posixt', 'time', 'date', and 'hms'

xportr_length()

There are two sources of length (data-driven and spec-driven):

  • Data-driven length: max length for character columns and 8 for other data types

  • Spec-driven length: from the metadata

  1. Users can either specify the length in the metadata or leave it blank for data-driven length.
  2. When the length is missing in the metadata, the data-driven length will be applied.

Next we will use xportr_length() to apply the length column of the metadata object to the ADSL dataset. Using the str() function we have displayed all the variables with their attributes. You can see that each variable has a label, but there is no information on the lengths of the variable.

  tibble [306 × 51] (S3: tbl_df/tbl/data.frame)
   $ STUDYID : chr [1:306] "CDISCPILOT01" "CDISCPILOT01" "CDISCPILOT01" "CDISCPILOT01" ...
    ..- attr(*, "label")= chr "Study Identifier"
   $ USUBJID : chr [1:306] "01-701-1015" "01-701-1023" "01-701-1028" "01-701-1033" ...
    ..- attr(*, "label")= chr "Unique Subject Identifier"
   $ SUBJID  : chr [1:306] "1015" "1023" "1028" "1033" ...
    ..- attr(*, "label")= chr "Subject Identifier for the Study"
   $ RFSTDTC : chr [1:306] "2014-01-02" "2012-08-05" "2013-07-19" "2014-03-18" ...
    ..- attr(*, "label")= chr "Subject Reference Start Date/Time"
   $ RFENDTC : chr [1:306] "2014-07-02" "2012-09-02" "2014-01-14" "2014-04-14" ...
    ..- attr(*, "label")= chr "Subject Reference End Date/Time"
   $ RFXSTDTC: chr [1:306] "2014-01-02" "2012-08-05" "2013-07-19" "2014-03-18" ...
    ..- attr(*, "label")= chr "Date/Time of First Study Treatment"
   $ RFXENDTC: chr [1:306] "2014-07-02" "2012-09-01" "2014-01-14" "2014-03-31" ...
    ..- attr(*, "label")= chr "Date/Time of Last Study Treatment"
   $ RFICDTC : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr "Date/Time of Informed Consent"
   $ RFPENDTC: chr [1:306] "2014-07-02T11:45" "2013-02-18" "2014-01-14T11:10" "2014-09-15" ...
    ..- attr(*, "label")= chr "Date/Time of End of Participation"
   $ DTHDTC  : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr "Date/Time of Death"
   $ DTHFL   : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr "Subject Death Flag"
   $ SITEID  : chr [1:306] "701" "701" "701" "701" ...
    ..- attr(*, "label")= chr "Study Site Identifier"
   $ AGE     : num [1:306] 63 64 71 74 77 85 59 68 81 84 ...
    ..- attr(*, "label")= chr "Age"
   $ AGEU    : chr [1:306] "YEARS" "YEARS" "YEARS" "YEARS" ...
    ..- attr(*, "label")= chr "Age Units"
   $ SEX     : chr [1:306] "F" "M" "M" "M" ...
    ..- attr(*, "label")= chr "Sex"
   $ RACE    : chr [1:306] "WHITE" "WHITE" "WHITE" "WHITE" ...
    ..- attr(*, "label")= chr "Race"
   $ ETHNIC  : chr [1:306] "HISPANIC OR LATINO" "HISPANIC OR LATINO" "NOT HISPANIC OR LATINO" "NOT HISPANIC OR LATINO" ...
    ..- attr(*, "label")= chr "Ethnicity"
   $ ARMCD   : chr [1:306] "Pbo" "Pbo" "Xan_Hi" "Xan_Lo" ...
    ..- attr(*, "label")= chr "Planned Arm Code"
   $ ARM     : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Planned Arm"
   $ ACTARMCD: chr [1:306] "Pbo" "Pbo" "Xan_Hi" "Xan_Lo" ...
    ..- attr(*, "label")= chr "Actual Arm Code"
   $ ACTARM  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Actual Arm"
   $ COUNTRY : chr [1:306] "USA" "USA" "USA" "USA" ...
    ..- attr(*, "label")= chr "Country"
   $ DMDTC   : chr [1:306] "2013-12-26" "2012-07-22" "2013-07-11" "2014-03-10" ...
    ..- attr(*, "label")= chr "Date/Time of Collection"
   $ DMDY    : num [1:306] -7 -14 -8 -8 -7 -21 NA -9 -13 -7 ...
    ..- attr(*, "label")= chr "Study Day of Collection"
   $ TRT01P  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Planned Arm"
   $ TRT01A  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Actual Arm"
   $ TRTSDTM : POSIXct[1:306], format: "2014-01-02" "2012-08-05" ...
   $ TRTSTMF : chr [1:306] "H" "H" "H" "H" ...
   $ TRTEDTM : POSIXct[1:306], format: "2014-07-02 23:59:59" "2012-09-01 23:59:59" ...
   $ TRTETMF : chr [1:306] "H" "H" "H" "H" ...
   $ TRTSDT  : Date[1:306], format: "2014-01-02" "2012-08-05" ...
   $ TRTEDT  : Date[1:306], format: "2014-07-02" "2012-09-01" ...
   $ TRTDURD : num [1:306] 182 28 180 14 183 26 NA 190 10 55 ...
   $ SCRFDT  : Date[1:306], format: NA NA ...
   $ EOSDT   : Date[1:306], format: "2014-07-02" "2012-09-02" ...
   $ EOSSTT  : chr [1:306] "COMPLETED" "DISCONTINUED" "COMPLETED" "DISCONTINUED" ...
   $ FRVDT   : Date[1:306], format: NA "2013-02-18" ...
   $ RANDDT  : Date[1:306], format: "2014-01-02" "2012-08-05" ...
   $ DTHDT   : Date[1:306], format: NA NA ...
   $ DTHDTF  : chr [1:306] NA NA NA NA ...
   $ DTHADY  : num [1:306] NA NA NA NA NA NA NA NA NA NA ...
   $ LDDTHELD: num [1:306] NA NA NA NA NA NA NA NA NA NA ...
   $ LSTALVDT: Date[1:306], format: "2014-07-02" "2012-09-02" ...
   $ SAFFL   : chr [1:306] "Y" "Y" "Y" "Y" ...
   $ RACEGR1 : chr [1:306] "White" "White" "White" "White" ...
   $ AGEGR1  : chr [1:306] "18-64" "18-64" ">64" ">64" ...
   $ REGION1 : chr [1:306] "NA" "NA" "NA" "NA" ...
   $ LDDTHGR1: chr [1:306] NA NA NA NA ...
   $ DTH30FL : chr [1:306] NA NA NA NA ...
   $ DTHA30FL: chr [1:306] NA NA NA NA ...
   $ DTHB30FL: chr [1:306] NA NA NA NA ...
   - attr(*, "label")= chr "Demographics"
adsl_length <- xportr_length(
  .df = ADSL,
  metadata = var_spec,
  domain = "ADSL",
  verbose = "warn",
  length_source = "metadata"
)
  
  ── Variable lengths missing from metadata. ──
  
30 lengths resolved `RFXSTDTC`, `RFXENDTC`, `RFICDTC`, `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`, `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`, `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`, `REGION1`, `LDDTHGR1`, `DTH30FL`, `DTHA30FL`, and `DTHB30FL`
  Warning: Variable(s) present in dataframe but doesn't exist in
  `metadata`.Problem with `RFXSTDTC`, `RFXENDTC`, `RFICDTC`, `RFPENDTC`,
  `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`, `DMDY`, `TRTSDTM`,
  `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`, `RANDDT`, `DTHDT`,
  `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`, `REGION1`, `LDDTHGR1`,
  `DTH30FL`, `DTHA30FL`, and `DTHB30FL`

Using xportr_length() with verbose = "warn" we can apply the length column to all the columns in the dataset. The function detects that two variables, TRTDUR and DCREASCD are missing from the metadata file. Note that the variables have slight misspellings in the dataset and metadata, which is a great catch! However, lengths are still applied with TRTDUR being give a length of 8 and DCREASCD a length of 200.

Using the str() function, you can see below that xportr_length() successfully applied all the lengths of the variable to the variables in the dataset.

  tibble [306 × 51] (S3: tbl_df/tbl/data.frame)
   $ STUDYID : chr [1:306] "CDISCPILOT01" "CDISCPILOT01" "CDISCPILOT01" "CDISCPILOT01" ...
    ..- attr(*, "label")= chr "Study Identifier"
    ..- attr(*, "width")= num 12
   $ USUBJID : chr [1:306] "01-701-1015" "01-701-1023" "01-701-1028" "01-701-1033" ...
    ..- attr(*, "label")= chr "Unique Subject Identifier"
    ..- attr(*, "width")= num 11
   $ SUBJID  : chr [1:306] "1015" "1023" "1028" "1033" ...
    ..- attr(*, "label")= chr "Subject Identifier for the Study"
    ..- attr(*, "width")= num 4
   $ RFSTDTC : chr [1:306] "2014-01-02" "2012-08-05" "2013-07-19" "2014-03-18" ...
    ..- attr(*, "label")= chr "Subject Reference Start Date/Time"
    ..- attr(*, "width")= num 20
   $ RFENDTC : chr [1:306] "2014-07-02" "2012-09-02" "2014-01-14" "2014-04-14" ...
    ..- attr(*, "label")= chr "Subject Reference End Date/Time"
    ..- attr(*, "width")= num 20
   $ RFXSTDTC: chr [1:306] "2014-01-02" "2012-08-05" "2013-07-19" "2014-03-18" ...
    ..- attr(*, "label")= chr "Date/Time of First Study Treatment"
    ..- attr(*, "width")= num 10
   $ RFXENDTC: chr [1:306] "2014-07-02" "2012-09-01" "2014-01-14" "2014-03-31" ...
    ..- attr(*, "label")= chr "Date/Time of Last Study Treatment"
    ..- attr(*, "width")= num 10
   $ RFICDTC : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr "Date/Time of Informed Consent"
    ..- attr(*, "width")= num 0
   $ RFPENDTC: chr [1:306] "2014-07-02T11:45" "2013-02-18" "2014-01-14T11:10" "2014-09-15" ...
    ..- attr(*, "label")= chr "Date/Time of End of Participation"
    ..- attr(*, "width")= num 16
   $ DTHDTC  : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr "Date/Time of Death"
    ..- attr(*, "width")= num 10
   $ DTHFL   : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr "Subject Death Flag"
    ..- attr(*, "width")= num 1
   $ SITEID  : chr [1:306] "701" "701" "701" "701" ...
    ..- attr(*, "label")= chr "Study Site Identifier"
    ..- attr(*, "width")= num 3
   $ AGE     : num [1:306] 63 64 71 74 77 85 59 68 81 84 ...
    ..- attr(*, "label")= chr "Age"
    ..- attr(*, "width")= num 8
   $ AGEU    : chr [1:306] "YEARS" "YEARS" "YEARS" "YEARS" ...
    ..- attr(*, "label")= chr "Age Units"
    ..- attr(*, "width")= num 5
   $ SEX     : chr [1:306] "F" "M" "M" "M" ...
    ..- attr(*, "label")= chr "Sex"
    ..- attr(*, "width")= num 1
   $ RACE    : chr [1:306] "WHITE" "WHITE" "WHITE" "WHITE" ...
    ..- attr(*, "label")= chr "Race"
    ..- attr(*, "width")= num 32
   $ ETHNIC  : chr [1:306] "HISPANIC OR LATINO" "HISPANIC OR LATINO" "NOT HISPANIC OR LATINO" "NOT HISPANIC OR LATINO" ...
    ..- attr(*, "label")= chr "Ethnicity"
    ..- attr(*, "width")= num 22
   $ ARMCD   : chr [1:306] "Pbo" "Pbo" "Xan_Hi" "Xan_Lo" ...
    ..- attr(*, "label")= chr "Planned Arm Code"
    ..- attr(*, "width")= num 8
   $ ARM     : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Planned Arm"
    ..- attr(*, "width")= num 20
   $ ACTARMCD: chr [1:306] "Pbo" "Pbo" "Xan_Hi" "Xan_Lo" ...
    ..- attr(*, "label")= chr "Actual Arm Code"
    ..- attr(*, "width")= num 8
   $ ACTARM  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Actual Arm"
    ..- attr(*, "width")= num 20
   $ COUNTRY : chr [1:306] "USA" "USA" "USA" "USA" ...
    ..- attr(*, "label")= chr "Country"
    ..- attr(*, "width")= num 3
   $ DMDTC   : chr [1:306] "2013-12-26" "2012-07-22" "2013-07-11" "2014-03-10" ...
    ..- attr(*, "label")= chr "Date/Time of Collection"
    ..- attr(*, "width")= num 10
   $ DMDY    : num [1:306] -7 -14 -8 -8 -7 -21 NA -9 -13 -7 ...
    ..- attr(*, "label")= chr "Study Day of Collection"
    ..- attr(*, "width")= num 8
   $ TRT01P  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Planned Arm"
    ..- attr(*, "width")= num 20
   $ TRT01A  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Actual Arm"
    ..- attr(*, "width")= num 20
   $ TRTSDTM : POSIXct[1:306], format: "2014-01-02" "2012-08-05" ...
   $ TRTSTMF : chr [1:306] "H" "H" "H" "H" ...
    ..- attr(*, "width")= num 1
   $ TRTEDTM : POSIXct[1:306], format: "2014-07-02 23:59:59" "2012-09-01 23:59:59" ...
   $ TRTETMF : chr [1:306] "H" "H" "H" "H" ...
    ..- attr(*, "width")= num 1
   $ TRTSDT  : Date[1:306], format: "2014-01-02" "2012-08-05" ...
   $ TRTEDT  : Date[1:306], format: "2014-07-02" "2012-09-01" ...
   $ TRTDURD : num [1:306] 182 28 180 14 183 26 NA 190 10 55 ...
    ..- attr(*, "width")= num 8
   $ SCRFDT  : Date[1:306], format: NA NA ...
   $ EOSDT   : Date[1:306], format: "2014-07-02" "2012-09-02" ...
   $ EOSSTT  : chr [1:306] "COMPLETED" "DISCONTINUED" "COMPLETED" "DISCONTINUED" ...
    ..- attr(*, "width")= num 12
   $ FRVDT   : Date[1:306], format: NA "2013-02-18" ...
   $ RANDDT  : Date[1:306], format: "2014-01-02" "2012-08-05" ...
   $ DTHDT   : Date[1:306], format: NA NA ...
   $ DTHDTF  : chr [1:306] NA NA NA NA ...
    ..- attr(*, "width")= num 0
   $ DTHADY  : num [1:306] NA NA NA NA NA NA NA NA NA NA ...
    ..- attr(*, "width")= num 8
   $ LDDTHELD: num [1:306] NA NA NA NA NA NA NA NA NA NA ...
    ..- attr(*, "width")= num 8
   $ LSTALVDT: Date[1:306], format: "2014-07-02" "2012-09-02" ...
   $ SAFFL   : chr [1:306] "Y" "Y" "Y" "Y" ...
    ..- attr(*, "width")= num 1
   $ RACEGR1 : chr [1:306] "White" "White" "White" "White" ...
    ..- attr(*, "width")= num 9
   $ AGEGR1  : chr [1:306] "18-64" "18-64" ">64" ">64" ...
    ..- attr(*, "width")= num 5
   $ REGION1 : chr [1:306] "NA" "NA" "NA" "NA" ...
    ..- attr(*, "width")= num 2
   $ LDDTHGR1: chr [1:306] NA NA NA NA ...
    ..- attr(*, "width")= num 5
   $ DTH30FL : chr [1:306] NA NA NA NA ...
    ..- attr(*, "width")= num 1
   $ DTHA30FL: chr [1:306] NA NA NA NA ...
    ..- attr(*, "width")= num 0
   $ DTHB30FL: chr [1:306] NA NA NA NA ...
    ..- attr(*, "width")= num 1
   - attr(*, "label")= chr "Demographics"
   - attr(*, "_xportr.df_arg_")= chr "ADSL"

Just like we did for xportr_type(), setting verbose = "stop" immediately stops R from processing the lengths. Here the function detects the missing variables and will not apply any lengths to the dataset until corrective action is applied.

adsl_length <- xportr_length(
  .df = ADSL,
  metadata = var_spec,
  domain = "ADSL",
  verbose = "stop",
  length_source = "metadata"
)
  
  ── Variable lengths missing from metadata. ──
  
30 lengths resolved `RFXSTDTC`, `RFXENDTC`, `RFICDTC`, `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`, `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`, `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`, `REGION1`, `LDDTHGR1`, `DTH30FL`, `DTHA30FL`, and `DTHB30FL`
  Error in `xportr_logger()` at xportr/R/messages.R:147:5:
  ! Variable(s) present in dataframe but doesn't exist in `metadata`.Problem with `RFXSTDTC`, `RFXENDTC`, `RFICDTC`, `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`, `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`, `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`, `REGION1`, `LDDTHGR1`, `DTH30FL`, `DTHA30FL`, and `DTHB30FL`

xportr_label()

As you are creating your dataset in R you will often find that R removes the label of your variable. Using xportr_label() you can easily re-apply all your labels to your variables in one quick action.

For this example, we are going to manipulate both the metadata and the ADSL dataset:

  • The metadata will have the variable TRTSDT label be greater than 40 characters.
  • The ADSL dataset will have all its labels stripped from it.

Remember in the length example, the labels were on the original dataset as seen in the str() output.

var_spec_lbl <- var_spec %>%
  mutate(label = if_else(variable == "TRTSDT",
    "Length of variable label must be 40 characters or less", label
  ))

adsl_lbl <- ADSL

adsl_lbl <- haven::zap_label(ADSL)

We have successfully removed all the labels.

  tibble [306 × 51] (S3: tbl_df/tbl/data.frame)
   $ STUDYID : chr [1:306] "CDISCPILOT01" "CDISCPILOT01" "CDISCPILOT01" "CDISCPILOT01" ...
   $ USUBJID : chr [1:306] "01-701-1015" "01-701-1023" "01-701-1028" "01-701-1033" ...
   $ SUBJID  : chr [1:306] "1015" "1023" "1028" "1033" ...
   $ RFSTDTC : chr [1:306] "2014-01-02" "2012-08-05" "2013-07-19" "2014-03-18" ...
   $ RFENDTC : chr [1:306] "2014-07-02" "2012-09-02" "2014-01-14" "2014-04-14" ...
   $ RFXSTDTC: chr [1:306] "2014-01-02" "2012-08-05" "2013-07-19" "2014-03-18" ...
   $ RFXENDTC: chr [1:306] "2014-07-02" "2012-09-01" "2014-01-14" "2014-03-31" ...
   $ RFICDTC : chr [1:306] NA NA NA NA ...
   $ RFPENDTC: chr [1:306] "2014-07-02T11:45" "2013-02-18" "2014-01-14T11:10" "2014-09-15" ...
   $ DTHDTC  : chr [1:306] NA NA NA NA ...
   $ DTHFL   : chr [1:306] NA NA NA NA ...
   $ SITEID  : chr [1:306] "701" "701" "701" "701" ...
   $ AGE     : num [1:306] 63 64 71 74 77 85 59 68 81 84 ...
   $ AGEU    : chr [1:306] "YEARS" "YEARS" "YEARS" "YEARS" ...
   $ SEX     : chr [1:306] "F" "M" "M" "M" ...
   $ RACE    : chr [1:306] "WHITE" "WHITE" "WHITE" "WHITE" ...
   $ ETHNIC  : chr [1:306] "HISPANIC OR LATINO" "HISPANIC OR LATINO" "NOT HISPANIC OR LATINO" "NOT HISPANIC OR LATINO" ...
   $ ARMCD   : chr [1:306] "Pbo" "Pbo" "Xan_Hi" "Xan_Lo" ...
   $ ARM     : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
   $ ACTARMCD: chr [1:306] "Pbo" "Pbo" "Xan_Hi" "Xan_Lo" ...
   $ ACTARM  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
   $ COUNTRY : chr [1:306] "USA" "USA" "USA" "USA" ...
   $ DMDTC   : chr [1:306] "2013-12-26" "2012-07-22" "2013-07-11" "2014-03-10" ...
   $ DMDY    : num [1:306] -7 -14 -8 -8 -7 -21 NA -9 -13 -7 ...
   $ TRT01P  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
   $ TRT01A  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
   $ TRTSDTM : POSIXct[1:306], format: "2014-01-02" "2012-08-05" ...
   $ TRTSTMF : chr [1:306] "H" "H" "H" "H" ...
   $ TRTEDTM : POSIXct[1:306], format: "2014-07-02 23:59:59" "2012-09-01 23:59:59" ...
   $ TRTETMF : chr [1:306] "H" "H" "H" "H" ...
   $ TRTSDT  : Date[1:306], format: "2014-01-02" "2012-08-05" ...
   $ TRTEDT  : Date[1:306], format: "2014-07-02" "2012-09-01" ...
   $ TRTDURD : num [1:306] 182 28 180 14 183 26 NA 190 10 55 ...
   $ SCRFDT  : Date[1:306], format: NA NA ...
   $ EOSDT   : Date[1:306], format: "2014-07-02" "2012-09-02" ...
   $ EOSSTT  : chr [1:306] "COMPLETED" "DISCONTINUED" "COMPLETED" "DISCONTINUED" ...
   $ FRVDT   : Date[1:306], format: NA "2013-02-18" ...
   $ RANDDT  : Date[1:306], format: "2014-01-02" "2012-08-05" ...
   $ DTHDT   : Date[1:306], format: NA NA ...
   $ DTHDTF  : chr [1:306] NA NA NA NA ...
   $ DTHADY  : num [1:306] NA NA NA NA NA NA NA NA NA NA ...
   $ LDDTHELD: num [1:306] NA NA NA NA NA NA NA NA NA NA ...
   $ LSTALVDT: Date[1:306], format: "2014-07-02" "2012-09-02" ...
   $ SAFFL   : chr [1:306] "Y" "Y" "Y" "Y" ...
   $ RACEGR1 : chr [1:306] "White" "White" "White" "White" ...
   $ AGEGR1  : chr [1:306] "18-64" "18-64" ">64" ">64" ...
   $ REGION1 : chr [1:306] "NA" "NA" "NA" "NA" ...
   $ LDDTHGR1: chr [1:306] NA NA NA NA ...
   $ DTH30FL : chr [1:306] NA NA NA NA ...
   $ DTHA30FL: chr [1:306] NA NA NA NA ...
   $ DTHB30FL: chr [1:306] NA NA NA NA ...
   - attr(*, "label")= chr "Demographics"

Using xportr_label() we will apply all the labels from our metadata to the dataset. Please note again that we are using verbose = "warn" and the same two issues for TRTDUR and DCREASCD are reported as missing from the metadata file. An additional message is sent around the TRTSDT label having a length of greater than 40.

adsl_lbl <- xportr_label(.df = adsl_lbl, metadata = var_spec_lbl, domain = "ADSL", verbose = "warn")
  
  ── Variable labels missing from metadata. ──
  
30 labels skipped
  Warning: Variable(s) present in dataframe but doesn't exist in `metadata`.
  ✖ Problem with `RFXSTDTC`, `RFXENDTC`, `RFICDTC`, `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`, `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`, `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`, `REGION1`, `LDDTHGR1`, `DTH30FL`, `DTHA30FL`, and `DTHB30FL`
  Warning: Length of variable label must be 40 characters or less.
  ✖ Problem with `TRTSDT`.

Success! All labels have been applied that are present in the both the metadata and the dataset. However, please note that the TRTSDT variable has had the label with characters greater than 40 applied to the dataset and the TRTDUR and DCREASCD have empty variable labels.

  tibble [306 × 51] (S3: tbl_df/tbl/data.frame)
   $ STUDYID : chr [1:306] "CDISCPILOT01" "CDISCPILOT01" "CDISCPILOT01" "CDISCPILOT01" ...
    ..- attr(*, "label")= chr "Study Identifier"
   $ USUBJID : chr [1:306] "01-701-1015" "01-701-1023" "01-701-1028" "01-701-1033" ...
    ..- attr(*, "label")= chr "Unique Subject Identifier"
   $ SUBJID  : chr [1:306] "1015" "1023" "1028" "1033" ...
    ..- attr(*, "label")= chr "Subject Identifier for the Study"
   $ RFSTDTC : chr [1:306] "2014-01-02" "2012-08-05" "2013-07-19" "2014-03-18" ...
    ..- attr(*, "label")= chr "Subject Reference Start Date/Time"
   $ RFENDTC : chr [1:306] "2014-07-02" "2012-09-02" "2014-01-14" "2014-04-14" ...
    ..- attr(*, "label")= chr "Subject Reference End Date/Time"
   $ RFXSTDTC: chr [1:306] "2014-01-02" "2012-08-05" "2013-07-19" "2014-03-18" ...
    ..- attr(*, "label")= chr ""
   $ RFXENDTC: chr [1:306] "2014-07-02" "2012-09-01" "2014-01-14" "2014-03-31" ...
    ..- attr(*, "label")= chr ""
   $ RFICDTC : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr ""
   $ RFPENDTC: chr [1:306] "2014-07-02T11:45" "2013-02-18" "2014-01-14T11:10" "2014-09-15" ...
    ..- attr(*, "label")= chr ""
   $ DTHDTC  : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr ""
   $ DTHFL   : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr "Subject Died?"
   $ SITEID  : chr [1:306] "701" "701" "701" "701" ...
    ..- attr(*, "label")= chr "Study Site Identifier"
   $ AGE     : num [1:306] 63 64 71 74 77 85 59 68 81 84 ...
    ..- attr(*, "label")= chr "Age"
   $ AGEU    : chr [1:306] "YEARS" "YEARS" "YEARS" "YEARS" ...
    ..- attr(*, "label")= chr "Age Units"
   $ SEX     : chr [1:306] "F" "M" "M" "M" ...
    ..- attr(*, "label")= chr "Sex"
   $ RACE    : chr [1:306] "WHITE" "WHITE" "WHITE" "WHITE" ...
    ..- attr(*, "label")= chr "Race"
   $ ETHNIC  : chr [1:306] "HISPANIC OR LATINO" "HISPANIC OR LATINO" "NOT HISPANIC OR LATINO" "NOT HISPANIC OR LATINO" ...
    ..- attr(*, "label")= chr "Ethnicity"
   $ ARMCD   : chr [1:306] "Pbo" "Pbo" "Xan_Hi" "Xan_Lo" ...
    ..- attr(*, "label")= chr ""
   $ ARM     : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Planned Arm"
   $ ACTARMCD: chr [1:306] "Pbo" "Pbo" "Xan_Hi" "Xan_Lo" ...
    ..- attr(*, "label")= chr ""
   $ ACTARM  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr ""
   $ COUNTRY : chr [1:306] "USA" "USA" "USA" "USA" ...
    ..- attr(*, "label")= chr ""
   $ DMDTC   : chr [1:306] "2013-12-26" "2012-07-22" "2013-07-11" "2014-03-10" ...
    ..- attr(*, "label")= chr ""
   $ DMDY    : num [1:306] -7 -14 -8 -8 -7 -21 NA -9 -13 -7 ...
    ..- attr(*, "label")= chr ""
   $ TRT01P  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Planned Treatment for Period 01"
   $ TRT01A  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Actual Treatment for Period 01"
   $ TRTSDTM : POSIXct[1:306], format: "2014-01-02" "2012-08-05" ...
   $ TRTSTMF : chr [1:306] "H" "H" "H" "H" ...
    ..- attr(*, "label")= chr ""
   $ TRTEDTM : POSIXct[1:306], format: "2014-07-02 23:59:59" "2012-09-01 23:59:59" ...
   $ TRTETMF : chr [1:306] "H" "H" "H" "H" ...
    ..- attr(*, "label")= chr ""
   $ TRTSDT  : Date[1:306], format: "2014-01-02" "2012-08-05" ...
   $ TRTEDT  : Date[1:306], format: "2014-07-02" "2012-09-01" ...
   $ TRTDURD : num [1:306] 182 28 180 14 183 26 NA 190 10 55 ...
    ..- attr(*, "label")= chr "Total Treatment Duration (Days)"
   $ SCRFDT  : Date[1:306], format: NA NA ...
   $ EOSDT   : Date[1:306], format: "2014-07-02" "2012-09-02" ...
   $ EOSSTT  : chr [1:306] "COMPLETED" "DISCONTINUED" "COMPLETED" "DISCONTINUED" ...
    ..- attr(*, "label")= chr "End of Study Status"
   $ FRVDT   : Date[1:306], format: NA "2013-02-18" ...
   $ RANDDT  : Date[1:306], format: "2014-01-02" "2012-08-05" ...
   $ DTHDT   : Date[1:306], format: NA NA ...
   $ DTHDTF  : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr ""
   $ DTHADY  : num [1:306] NA NA NA NA NA NA NA NA NA NA ...
    ..- attr(*, "label")= chr ""
   $ LDDTHELD: num [1:306] NA NA NA NA NA NA NA NA NA NA ...
    ..- attr(*, "label")= chr ""
   $ LSTALVDT: Date[1:306], format: "2014-07-02" "2012-09-02" ...
   $ SAFFL   : chr [1:306] "Y" "Y" "Y" "Y" ...
    ..- attr(*, "label")= chr "Safety Population Flag"
   $ RACEGR1 : chr [1:306] "White" "White" "White" "White" ...
    ..- attr(*, "label")= chr ""
   $ AGEGR1  : chr [1:306] "18-64" "18-64" ">64" ">64" ...
    ..- attr(*, "label")= chr "Pooled Age Group 1"
   $ REGION1 : chr [1:306] "NA" "NA" "NA" "NA" ...
    ..- attr(*, "label")= chr ""
   $ LDDTHGR1: chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr ""
   $ DTH30FL : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr ""
   $ DTHA30FL: chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr ""
   $ DTHB30FL: chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr ""
   - attr(*, "label")= chr "Demographics"
   - attr(*, "_xportr.df_arg_")= chr "ADSL"

Just like we did for the other functions, setting verbose = "stop" immediately stops R from processing the labels. Here the function detects the mismatches between the variables and labels as well as the label that is greater than 40 characters. As this stops the process, none of the labels will be applied to the dataset until corrective action is applied.

adsl_label <- xportr_label(.df = adsl_lbl, metadata = var_spec_lbl, domain = "ADSL", verbose = "stop")
  
  ── Variable labels missing from metadata. ──
  
30 labels skipped
  Error in `xportr_logger()` at xportr/R/messages.R:172:5:
  ! Variable(s) present in dataframe but doesn't exist in `metadata`.
  ✖ Problem with `RFXSTDTC`, `RFXENDTC`, `RFICDTC`, `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`, `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`, `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`, `REGION1`, `LDDTHGR1`, `DTH30FL`, `DTHA30FL`, and `DTHB30FL`

xportr_order()

The order of the dataset can greatly increase readability of the dataset for downstream stakeholders. For example, having all the treatment related variables or analysis variables grouped together can help with inspection and understanding of the dataset. xportr_order() can take the order information from the metadata and apply it to your dataset.

adsl_ord <- xportr_order(.df = ADSL, metadata = var_spec, domain = "ADSL", verbose = "warn")
  
  ── 30 variables not in spec and moved to end ──
  
  Warning: Variable moved to end in `.df`: `RFXSTDTC`, `RFXENDTC`, `RFICDTC`,
  `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`,
  `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`,
  `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`,
  `REGION1`, `LDDTHGR1`, `DTH30FL`, `DTHA30FL`, and `DTHB30FL`
  ── 42 reordered in dataset ──
  Warning: Variable reordered in `.df`: `SITEID`, `ARM`, `TRT01P`, `TRT01A`,
  `TRTSDT`, `TRTEDT`, `TRTDURD`, `AGE`, `AGEGR1`, `AGEU`, `RACE`, `ETHNIC`,
  `SAFFL`, `DTHFL`, `RFSTDTC`, `RFENDTC`, `EOSSTT`, `RFXSTDTC`, `RFXENDTC`,
  `RFICDTC`, `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`,
  `DMDTC`, `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`,
  `FRVDT`, `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, and
  `RACEGR1`

Readers are encouraged to inspect the dataset and metadata to see the past order and updated order after calling the function. Note the messaging from xportr_order():

  • Variables not in the metadata are moved to the end
  • Variables not in order are re-ordered and a message is printed out on which ones were re-ordered.
adsl_ord <- xportr_order(.df = ADSL, metadata = var_spec, domain = "ADSL", verbose = "stop")
  ── 30 variables not in spec and moved to end ──
  
  Error in `xportr_logger()` at xportr/R/messages.R:199:5:
  ! Variable moved to end in `.df`: `RFXSTDTC`, `RFXENDTC`, `RFICDTC`, `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`, `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`, `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`, `REGION1`, `LDDTHGR1`, `DTH30FL`, `DTHA30FL`, and `DTHB30FL`

Just like we did for the other functions, setting verbose = "stop" immediately stops R from processing the order. If variables or metadata are missing from either, the re-ordering will not process until corrective action is performed.

xportr_format()

Formats play an important role in the SAS language and have a column in specification files. Being able to easily apply formats into your xpt file will allow downstream users of SAS to quickly format the data appropriately when reading into a SAS-based system. xportr_format() can take these formats and apply them. Please reference xportr_length() or xportr_label() to note the missing attr() for formats in our ADSL dataset.

This example is slightly different from previous examples. You will need to use xportr_type() to coerce R Date variables and others types to character or numeric. Only then can you use xportr_format() to apply the format column to the dataset.

adsl_fmt <- ADSL %>%
  xportr_type(metadata = var_spec, domain = "ADSL", verbose = "warn") %>%
  xportr_format(metadata = var_spec, domain = "ADSL")

Success! We have taken the metadata formats and applied them to the dataset. Please inspect variables like TRTSDT or DISONSDT to see the DATE9. format being applied.

  tibble [306 × 51] (S3: tbl_df/tbl/data.frame)
   $ STUDYID : chr [1:306] "CDISCPILOT01" "CDISCPILOT01" "CDISCPILOT01" "CDISCPILOT01" ...
    ..- attr(*, "label")= chr "Study Identifier"
    ..- attr(*, "format.sas")= chr ""
   $ USUBJID : chr [1:306] "01-701-1015" "01-701-1023" "01-701-1028" "01-701-1033" ...
    ..- attr(*, "label")= chr "Unique Subject Identifier"
    ..- attr(*, "format.sas")= chr ""
   $ SUBJID  : chr [1:306] "1015" "1023" "1028" "1033" ...
    ..- attr(*, "label")= chr "Subject Identifier for the Study"
    ..- attr(*, "format.sas")= chr ""
   $ RFSTDTC : chr [1:306] "2014-01-02" "2012-08-05" "2013-07-19" "2014-03-18" ...
    ..- attr(*, "label")= chr "Subject Reference Start Date/Time"
    ..- attr(*, "format.sas")= chr ""
   $ RFENDTC : chr [1:306] "2014-07-02" "2012-09-02" "2014-01-14" "2014-04-14" ...
    ..- attr(*, "label")= chr "Subject Reference End Date/Time"
    ..- attr(*, "format.sas")= chr ""
   $ RFXSTDTC: chr [1:306] "2014-01-02" "2012-08-05" "2013-07-19" "2014-03-18" ...
    ..- attr(*, "label")= chr "Date/Time of First Study Treatment"
    ..- attr(*, "format.sas")= chr ""
   $ RFXENDTC: chr [1:306] "2014-07-02" "2012-09-01" "2014-01-14" "2014-03-31" ...
    ..- attr(*, "label")= chr "Date/Time of Last Study Treatment"
    ..- attr(*, "format.sas")= chr ""
   $ RFICDTC : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr "Date/Time of Informed Consent"
    ..- attr(*, "format.sas")= chr ""
   $ RFPENDTC: chr [1:306] "2014-07-02T11:45" "2013-02-18" "2014-01-14T11:10" "2014-09-15" ...
    ..- attr(*, "label")= chr "Date/Time of End of Participation"
    ..- attr(*, "format.sas")= chr ""
   $ DTHDTC  : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr "Date/Time of Death"
    ..- attr(*, "format.sas")= chr ""
   $ DTHFL   : chr [1:306] NA NA NA NA ...
    ..- attr(*, "label")= chr "Subject Death Flag"
    ..- attr(*, "format.sas")= chr ""
   $ SITEID  : chr [1:306] "701" "701" "701" "701" ...
    ..- attr(*, "label")= chr "Study Site Identifier"
    ..- attr(*, "format.sas")= chr ""
   $ AGE     : num [1:306] 63 64 71 74 77 85 59 68 81 84 ...
    ..- attr(*, "label")= chr "Age"
    ..- attr(*, "format.sas")= chr ""
   $ AGEU    : chr [1:306] "YEARS" "YEARS" "YEARS" "YEARS" ...
    ..- attr(*, "label")= chr "Age Units"
    ..- attr(*, "format.sas")= chr ""
   $ SEX     : chr [1:306] "F" "M" "M" "M" ...
    ..- attr(*, "label")= chr "Sex"
    ..- attr(*, "format.sas")= chr ""
   $ RACE    : chr [1:306] "WHITE" "WHITE" "WHITE" "WHITE" ...
    ..- attr(*, "label")= chr "Race"
    ..- attr(*, "format.sas")= chr ""
   $ ETHNIC  : chr [1:306] "HISPANIC OR LATINO" "HISPANIC OR LATINO" "NOT HISPANIC OR LATINO" "NOT HISPANIC OR LATINO" ...
    ..- attr(*, "label")= chr "Ethnicity"
    ..- attr(*, "format.sas")= chr ""
   $ ARMCD   : chr [1:306] "Pbo" "Pbo" "Xan_Hi" "Xan_Lo" ...
    ..- attr(*, "label")= chr "Planned Arm Code"
    ..- attr(*, "format.sas")= chr ""
   $ ARM     : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Planned Arm"
    ..- attr(*, "format.sas")= chr ""
   $ ACTARMCD: chr [1:306] "Pbo" "Pbo" "Xan_Hi" "Xan_Lo" ...
    ..- attr(*, "label")= chr "Actual Arm Code"
    ..- attr(*, "format.sas")= chr ""
   $ ACTARM  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Actual Arm"
    ..- attr(*, "format.sas")= chr ""
   $ COUNTRY : chr [1:306] "USA" "USA" "USA" "USA" ...
    ..- attr(*, "label")= chr "Country"
    ..- attr(*, "format.sas")= chr ""
   $ DMDTC   : chr [1:306] "2013-12-26" "2012-07-22" "2013-07-11" "2014-03-10" ...
    ..- attr(*, "label")= chr "Date/Time of Collection"
    ..- attr(*, "format.sas")= chr ""
   $ DMDY    : num [1:306] -7 -14 -8 -8 -7 -21 NA -9 -13 -7 ...
    ..- attr(*, "label")= chr "Study Day of Collection"
    ..- attr(*, "format.sas")= chr ""
   $ TRT01P  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Planned Arm"
    ..- attr(*, "format.sas")= chr ""
   $ TRT01A  : chr [1:306] "Placebo" "Placebo" "Xanomeline High Dose" "Xanomeline Low Dose" ...
    ..- attr(*, "label")= chr "Description of Actual Arm"
    ..- attr(*, "format.sas")= chr ""
   $ TRTSDTM : POSIXct[1:306], format: "2014-01-02" "2012-08-05" ...
   $ TRTSTMF : chr [1:306] "H" "H" "H" "H" ...
    ..- attr(*, "format.sas")= chr ""
   $ TRTEDTM : POSIXct[1:306], format: "2014-07-02 23:59:59" "2012-09-01 23:59:59" ...
   $ TRTETMF : chr [1:306] "H" "H" "H" "H" ...
    ..- attr(*, "format.sas")= chr ""
   $ TRTSDT  : Date[1:306], format: "2014-01-02" "2012-08-05" ...
   $ TRTEDT  : Date[1:306], format: "2014-07-02" "2012-09-01" ...
   $ TRTDURD : num [1:306] 182 28 180 14 183 26 NA 190 10 55 ...
    ..- attr(*, "format.sas")= chr ""
   $ SCRFDT  : Date[1:306], format: NA NA ...
   $ EOSDT   : Date[1:306], format: "2014-07-02" "2012-09-02" ...
   $ EOSSTT  : chr [1:306] "COMPLETED" "DISCONTINUED" "COMPLETED" "DISCONTINUED" ...
    ..- attr(*, "format.sas")= chr ""
   $ FRVDT   : Date[1:306], format: NA "2013-02-18" ...
   $ RANDDT  : Date[1:306], format: "2014-01-02" "2012-08-05" ...
   $ DTHDT   : Date[1:306], format: NA NA ...
   $ DTHDTF  : chr [1:306] NA NA NA NA ...
    ..- attr(*, "format.sas")= chr ""
   $ DTHADY  : num [1:306] NA NA NA NA NA NA NA NA NA NA ...
    ..- attr(*, "format.sas")= chr ""
   $ LDDTHELD: num [1:306] NA NA NA NA NA NA NA NA NA NA ...
    ..- attr(*, "format.sas")= chr ""
   $ LSTALVDT: Date[1:306], format: "2014-07-02" "2012-09-02" ...
   $ SAFFL   : chr [1:306] "Y" "Y" "Y" "Y" ...
    ..- attr(*, "format.sas")= chr ""
   $ RACEGR1 : chr [1:306] "White" "White" "White" "White" ...
    ..- attr(*, "format.sas")= chr ""
   $ AGEGR1  : chr [1:306] "18-64" "18-64" ">64" ">64" ...
    ..- attr(*, "format.sas")= chr ""
   $ REGION1 : chr [1:306] "NA" "NA" "NA" "NA" ...
    ..- attr(*, "format.sas")= chr ""
   $ LDDTHGR1: chr [1:306] NA NA NA NA ...
    ..- attr(*, "format.sas")= chr ""
   $ DTH30FL : chr [1:306] NA NA NA NA ...
    ..- attr(*, "format.sas")= chr ""
   $ DTHA30FL: chr [1:306] NA NA NA NA ...
    ..- attr(*, "format.sas")= chr ""
   $ DTHB30FL: chr [1:306] NA NA NA NA ...
    ..- attr(*, "format.sas")= chr ""
   - attr(*, "label")= chr "Demographics"
   - attr(*, "_xportr.df_arg_")= chr "ADSL"

At the time of {xportr} v0.3.0 we have not implemented any warnings or error messaging for this function. However, xportr_write() through xpt_validate() will check that formats applied are valid SAS formats.

xportr_write()

Finally, we want to write out an xpt dataset with all our metadata applied.

We will make use of xportr_metadata() to reduce repetitive metadata and domain specifications. We will use default option for verbose, which is just message and so not set anything for verbose. In xportr_write() we will specify the path, which will just be our current working directory, set the dataset label and toggle the strict_checks to be FALSE. It is also note worthy that you can set the dataset label using the xportr_df_label and a dataset_spec which will be used by the xportr_write()

ADSL %>%
  xportr_metadata(var_spec, "ADSL") %>%
  xportr_type() %>%
  xportr_length(length_source = "metadata") %>%
  xportr_label() %>%
  xportr_order() %>%
  xportr_format() %>%
  xportr_df_label(dataset_spec) %>%
  xportr_write(path = "adsl.xpt", strict_checks = FALSE)
  
  ── Variable lengths missing from metadata. ──
  
30 lengths resolved `RFXSTDTC`, `RFXENDTC`, `RFICDTC`, `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`, `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`, `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`, `REGION1`, `LDDTHGR1`, `DTH30FL`, `DTHA30FL`, and `DTHB30FL`
  
  ── Variable labels missing from metadata. ──
  
30 labels skipped
  
  ── 30 variables not in spec and moved to end ──
  
  ── 42 reordered in dataset ──
  

Success! We have applied types, lengths, labels, ordering and formats to our dataset. Note the messages written out to the console. Remember the TRTDUR and DCREASCD and how these are not present in the metadata, but in the dataset. This impacts the messaging for lengths and labels where xportr is printing out some feedback to us on the two issues. 5 types are coerced, as well as 36 variables re-ordered. Note that strict_checks was set to FALSE.

The next two examples showcase the strict_checks = TRUE option in xportr_write() where we will look at formats and labels.

ADSL %>%
  xportr_write(path = "adsl.xpt", metadata = dataset_spec, domain = "ADSL", strict_checks = TRUE)

As there at several ---DT type variables, xportr_write() detects the lack of formats being applied. To correct this remember you can use xportr_type() and xportr_format() to apply formats to your xpt dataset.

Below we have manipulated the labels to again be greater than 40 characters for TRTSDT. We have turned off xportr_label() verbose options to only produce a message. However, xportr_write() with strict_checks = TRUE will error out as this is one of the many xpt_validate() checks going on behind the scenes.

var_spec_lbl <- var_spec %>%
  mutate(label = if_else(variable == "TRTSDT",
    "Length of variable label must be 40 characters or less", label
  ))

ADSL %>%
  xportr_metadata(var_spec_lbl, "ADSL") %>%
  xportr_label() %>%
  xportr_type() %>%
  xportr_format() %>%
  xportr_df_label(dataset_spec) %>%
  xportr_write(path = "adsl.xpt", strict_checks = TRUE)
  ── Variable labels missing from metadata. ──
  
30 labels skipped
  Warning: Length of variable label must be 40 characters or less.
  ✖ Problem with `TRTSDT`.
  Error in `xportr_write()`:
  ! The following validation checks failed:
  • Label 'TRTSDT=Length of variable label must be 40 characters or less' must be 40 characters or less.

xportr()

Too many functions to call? Simplify with xportr(). It bundles all core xportr functions for writing to xpt.

xportr(
  ADSL,
  var_metadata = var_spec,
  df_metadata = dataset_spec,
  domain = "ADSL",
  verbose = "none",
  path = "adsl.xpt"
)
  
  ── Variable lengths missing from metadata. ──
  
30 lengths resolved `RFXSTDTC`, `RFXENDTC`, `RFICDTC`, `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`, `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`, `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`, `REGION1`, `LDDTHGR1`, `DTH30FL`, `DTHA30FL`, and `DTHB30FL`
  
  ── Variable labels missing from metadata. ──
  
30 labels skipped
  
  ── 30 variables not in spec and moved to end ──
  
  ── 42 reordered in dataset ──
  

xportr() is equivalent to calling the following functions individually:

ADSL %>%
  xportr_metadata(var_spec, "ADSL") %>%
  xportr_type() %>%
  xportr_length(length_source = "metadata") %>%
  xportr_label() %>%
  xportr_order() %>%
  xportr_format() %>%
  xportr_df_label(dataset_spec) %>%
  xportr_write(path = "adsl.xpt", strict_checks = FALSE)
  ── Variable lengths missing from metadata. ──
  
30 lengths resolved `RFXSTDTC`, `RFXENDTC`, `RFICDTC`, `RFPENDTC`, `DTHDTC`, `ARMCD`, `ACTARMCD`, `ACTARM`, `COUNTRY`, `DMDTC`, `DMDY`, `TRTSDTM`, `TRTSTMF`, `TRTEDTM`, `TRTETMF`, `SCRFDT`, `EOSDT`, `FRVDT`, `RANDDT`, `DTHDT`, `DTHDTF`, `DTHADY`, `LDDTHELD`, `LSTALVDT`, `RACEGR1`, `REGION1`, `LDDTHGR1`, `DTH30FL`, `DTHA30FL`, and `DTHB30FL`
  
  ── Variable labels missing from metadata. ──
  
30 labels skipped
  
  ── 30 variables not in spec and moved to end ──
  
  ── 42 reordered in dataset ──
  

Future Work

xportr is still undergoing development. We hope to produce more vignettes and functions that will allow users to bulk process multiple datasets as well as have examples of piping xpt files and related documentation to a validation software service. As always, please let us know of any feature requests, documentation updates or bugs on our GitHub repo.